写在前面

最近学长推荐我去学一下 Rust,考虑了一下,决定从 Rust 官方的学习文档 —— 也就是 Rustlings 入手,我一共用了两天的时间来完成 Rustlings,下面是我的题解(截至 2023.9.2)

Rust 给我的感觉就是生态好,打包方便,有便捷的包管理器;但是 Rust 的语法是非常严苛,通过严格的语法规范来减少程序运行时内存错误的发生

Rustlings

intro

intro1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// intro1.rs
//
// About this `I AM NOT DONE` thing:
// We sometimes encourage you to keep trying things on a given exercise, even
// after you already figured it out. If you got everything working and feel
// ready for the next exercise, remove the `I AM NOT DONE` comment below.
//
// If you're running this using `rustlings watch`: The exercise file will be
// reloaded when you change one of the lines below! Try adding a `println!`
// line, or try changing what it outputs in your terminal. Try removing a
// semicolon and see what happens!
//
// Execute `rustlings hint intro1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
println!("Hello and");
println!(r#" welcome to... "#);
println!(r#" _ _ _ "#);
println!(r#" _ __ _ _ ___| |_| (_)_ __ __ _ ___ "#);
println!(r#" | '__| | | / __| __| | | '_ \ / _` / __| "#);
println!(r#" | | | |_| \__ \ |_| | | | | | (_| \__ \ "#);
println!(r#" |_| \__,_|___/\__|_|_|_| |_|\__, |___/ "#);
println!(r#" |___/ "#);
println!();
println!("This exercise compiles successfully. The remaining exercises contain a compiler");
println!("or logic error. The central concept behind Rustlings is to fix these errors and");
println!("solve the exercises. Good luck!");
println!();
println!("The source for this exercise is in `exercises/intro/intro1.rs`. Have a look!");
println!(
"Going forward, the source of the exercises will always be in the success/failure output."
);
println!();
println!(
"If you want to use rust-analyzer, Rust's LSP implementation, make sure your editor is set"
);
println!("up, and then run `rustlings lsp` before continuing.")
}

intro2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
// intro2.rs
//
// Make the code print a greeting to the world.
//
// Execute `rustlings hint intro2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let world = "world";
println!("Hello {}!", world);
}

variables

variables1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
// variables1.rs
//
// Make me compile!
//
// Execute `rustlings hint variables1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let x = 5;
println!("x has the value {}", x);
}

variables2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// variables2.rs
//
// Execute `rustlings hint variables2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let x = 10;
if x == 10 {
println!("x is ten!");
} else {
println!("x is not ten!");
}
}

variables3.rs

1
2
3
4
5
6
7
8
9
10
11
// variables3.rs
//
// Execute `rustlings hint variables3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let x: i32 = 0;
println!("Number {}", x);
}

variables4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
// variables4.rs
//
// Execute `rustlings hint variables4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let mut x = 3;
println!("Number {}", x);
x = 5; // don't change this line
println!("Number {}", x);
}

variables5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
// variables5.rs
//
// Execute `rustlings hint variables5` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let number = "T-H-R-E-E"; // don't change this line
println!("Spell a Number : {}", number);
let number = 3; // don't rename this variable
println!("Number plus two is : {}", number + 2);
}

variables6.rs

1
2
3
4
5
6
7
8
9
10
11
// variables6.rs
//
// Execute `rustlings hint variables6` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

const NUMBER : i32 = 3;
fn main() {
println!("Number {}", NUMBER);
}

functions

functions1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// functions1.rs
//
// Execute `rustlings hint functions1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn call_me(){
return;
}

fn main() {
call_me();
}

functions2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// functions2.rs
//
// Execute `rustlings hint functions2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
call_me(3);
}

fn call_me(num: i32) {
for i in 0..num {
println!("Ring! Call number {}", i + 1);
}
}

functions3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// functions3.rs
//
// Execute `rustlings hint functions3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
call_me(10);
}

fn call_me(num: u32) {
for i in 0..num {
println!("Ring! Call number {}", i + 1);
}
}

functions4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// functions4.rs
//
// This store is having a sale where if the price is an even number, you get 10
// Rustbucks off, but if it's an odd number, it's 3 Rustbucks off. (Don't worry
// about the function bodies themselves, we're only interested in the signatures
// for now. If anything, this is a good way to peek ahead to future exercises!)
//
// Execute `rustlings hint functions4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let original_price = 51;
println!("Your sale price is {}", sale_price(original_price));
}

fn sale_price(price: i32) -> i32 {
if is_even(price) {
price - 10
} else {
price - 3
}
}

fn is_even(num: i32) -> bool {
num % 2 == 0
}

functions5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// functions5.rs
//
// Execute `rustlings hint functions5` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let answer = square(3);
println!("The square of 3 is {}", answer);
}

fn square(num: i32) -> i32 {
num * num
}

if

if1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// if1.rs
//
// Execute `rustlings hint if1` or use the `hint` watch subcommand for a hint.

// I AM DONE

pub fn bigger(a: i32, b: i32) -> i32 {
// Complete this function to return the bigger number!
// Do not use:
// - another function call
// - additional variables
if a > b {
a
}else{
b
}
}

// Don't mind this for now :)
#[cfg(test)]
mod tests {
use super::*;

#[test]
fn ten_is_bigger_than_eight() {
assert_eq!(10, bigger(10, 8));
}

#[test]
fn fortytwo_is_bigger_than_thirtytwo() {
assert_eq!(42, bigger(32, 42));
}
}

if2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// if2.rs
//
// Step 1: Make me compile!
// Step 2: Get the bar_for_fuzz and default_to_baz tests passing!
//
// Execute `rustlings hint if2` or use the `hint` watch subcommand for a hint.

// I AM DONE

pub fn foo_if_fizz(fizzish: &str) -> &str {
if fizzish == "fizz" {
"foo"
} else if fizzish == "fuzz" {
"bar"
} else {
"baz"
}
}

// No test changes needed!
#[cfg(test)]
mod tests {
use super::*;

#[test]
fn foo_for_fizz() {
assert_eq!(foo_if_fizz("fizz"), "foo")
}

#[test]
fn bar_for_fuzz() {
assert_eq!(foo_if_fizz("fuzz"), "bar")
}

#[test]
fn default_to_baz() {
assert_eq!(foo_if_fizz("literally anything"), "baz")
}
}

if3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// if3.rs
//
// Execute `rustlings hint if3` or use the `hint` watch subcommand for a hint.

// I AM DONE

pub fn animal_habitat(animal: &str) -> &'static str {
let identifier = if animal == "crab" {
1
} else if animal == "gopher" {
2
} else if animal == "snake" {
3
} else {
0
};

// DO NOT CHANGE THIS STATEMENT BELOW
let habitat = if identifier == 1 {
"Beach"
} else if identifier == 2 {
"Burrow"
} else if identifier == 3 {
"Desert"
} else {
"Unknown"
};

habitat
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn gopher_lives_in_burrow() {
assert_eq!(animal_habitat("gopher"), "Burrow")
}

#[test]
fn snake_lives_in_desert() {
assert_eq!(animal_habitat("snake"), "Desert")
}

#[test]
fn crab_lives_on_beach() {
assert_eq!(animal_habitat("crab"), "Beach")
}

#[test]
fn unknown_animal() {
assert_eq!(animal_habitat("dinosaur"), "Unknown")
}
}

primitive_types

primitive_types1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// primitive_types1.rs
//
// Fill in the rest of the line that has code missing! No hints, there's no
// tricks, just get used to typing these :)
//
// Execute `rustlings hint primitive_types1` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
// Booleans (`bool`)

let is_morning = true;
if is_morning {
println!("Good morning!");
}

let is_evening = false; // Finish the rest of this line like the example! Or make it be false!
if is_evening {
println!("Good evening!");
}
}

primitive_types2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// primitive_types2.rs
//
// Fill in the rest of the line that has code missing! No hints, there's no
// tricks, just get used to typing these :)
//
// Execute `rustlings hint primitive_types2` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
// Characters (`char`)

// Note the _single_ quotes, these are different from the double quotes
// you've been seeing around.
let my_first_initial = 'C';
if my_first_initial.is_alphabetic() {
println!("Alphabetical!");
} else if my_first_initial.is_numeric() {
println!("Numerical!");
} else {
println!("Neither alphabetic nor numeric!");
}

let your_character = '1'; // Finish this line like the example! What's your favorite character?
// Try a letter, try a number, try a special character, try a character
// from a different language than your own, try an emoji!
if your_character.is_alphabetic() {
println!("Alphabetical!");
} else if your_character.is_numeric() {
println!("Numerical!");
} else {
println!("Neither alphabetic nor numeric!");
}
}

primitive_types3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// primitive_types3.rs
//
// Create an array with at least 100 elements in it where the ??? is.
//
// Execute `rustlings hint primitive_types3` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let a = 0..200;

if a.len() >= 100 {
println!("Wow, that's a big array!");
} else {
println!("Meh, I eat arrays like that for breakfast.");
}
}

primitive_types4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// primitive_types4.rs
//
// Get a slice out of Array a where the ??? is so that the test passes.
//
// Execute `rustlings hint primitive_types4` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

#[test]
fn slice_out_of_array() {
let a = [1, 2, 3, 4, 5];

let nice_slice = &a[1..4];

assert_eq!([2, 3, 4], nice_slice)
}

primitive_types5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// primitive_types5.rs
//
// Destructure the `cat` tuple so that the println will work.
//
// Execute `rustlings hint primitive_types5` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let cat = ("Furry McFurson", 3.5);
let (name, age) /* your pattern here */ = cat;

println!("{} is {} years old.", name, age);
}

primitive_types6.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// primitive_types6.rs
//
// Use a tuple index to access the second element of `numbers`. You can put the
// expression for the second element where ??? is so that the test passes.
//
// Execute `rustlings hint primitive_types6` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

#[test]
fn indexing_tuple() {
let numbers = (1, 2, 3);
// Replace below ??? with the tuple indexing syntax.
let second = numbers.1;

assert_eq!(2, second,
"This is not the 2nd number in the tuple!")
}

vec

vec1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// vecs1.rs
//
// Your task is to create a `Vec` which holds the exact same elements as in the
// array `a`.
//
// Make me compile and pass the test!
//
// Execute `rustlings hint vecs1` or use the `hint` watch subcommand for a hint.

// I AM DONE

fn array_and_vec() -> ([i32; 4], Vec<i32>) {
let a = [10, 20, 30, 40]; // a plain array
let v : Vec<i32> = vec![10, 20, 30, 40]; // TODO: declare your vector here with the macro for vectors

(a, v)
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_array_and_vec_similarity() {
let (a, v) = array_and_vec();
assert_eq!(a, v[..]);
}
}

vec1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// vecs2.rs
//
// A Vec of even numbers is given. Your task is to complete the loop so that
// each number in the Vec is multiplied by 2.
//
// Make me pass the test!
//
// Execute `rustlings hint vecs2` or use the `hint` watch subcommand for a hint.

// I AM DONE

fn vec_loop(mut v: Vec<i32>) -> Vec<i32> {
for element in v.iter_mut() {
// TODO: Fill this up so that each element in the Vec `v` is
// multiplied by 2.
*element *= 2;
}

// At this point, `v` should be equal to [4, 8, 12, 16, 20].
v
}

fn vec_map(v: &Vec<i32>) -> Vec<i32> {
v.iter().map(|element| {
// TODO: Do the same thing as above - but instead of mutating the
// Vec, you can just return the new number!
*element * 2
}).collect()
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_vec_loop() {
let v: Vec<i32> = (1..).filter(|x| x % 2 == 0).take(5).collect();
let ans = vec_loop(v.clone());

assert_eq!(ans, v.iter().map(|x| x * 2).collect::<Vec<i32>>());
}

#[test]
fn test_vec_map() {
let v: Vec<i32> = (1..).filter(|x| x % 2 == 0).take(5).collect();
let ans = vec_map(&v);

assert_eq!(ans, v.iter().map(|x| x * 2).collect::<Vec<i32>>());
}
}

move_semantics

move_semantics1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// move_semantics1.rs
//
// Execute `rustlings hint move_semantics1` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let vec0 = Vec::new();

let mut vec1 = fill_vec(vec0);

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);

vec1.push(88);

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);
}

fn fill_vec(vec: Vec<i32>) -> Vec<i32> {
let mut vec = vec;

vec.push(22);
vec.push(44);
vec.push(66);

vec
}

move_semantics2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// move_semantics2.rs
//
// Expected output:
// vec0 has length 3, with contents `[22, 44, 66]`
// vec1 has length 4, with contents `[22, 44, 66, 88]`
//
// Execute `rustlings hint move_semantics2` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let vec0 = Vec::new();

let mut vec1 = fill_vec(vec0);
let mut vec0 = vec1.clone();

println!("{} has length {}, with contents: `{:?}`", "vec0", vec0.len(), vec0);

vec1.push(88);

println!("{} has length {}, with contents `{:?}`", "vec1", vec1.len(), vec1);
}

fn fill_vec(vec: Vec<i32>) -> Vec<i32> {
let mut vec = vec;

vec.push(22);
vec.push(44);
vec.push(66);

vec
}

move_semantics3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// move_semantics3.rs
//
// Make me compile without adding new lines-- just changing existing lines! (no
// lines with multiple semicolons necessary!)
//
// Execute `rustlings hint move_semantics3` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let vec0 = Vec::new();

let mut vec1 = fill_vec(vec0);

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);

vec1.push(88);

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);
}

fn fill_vec(vec: Vec<i32>) -> Vec<i32> {
let mut vec = vec;

vec.push(22);
vec.push(44);
vec.push(66);

vec
}

move_semantics4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// move_semantics4.rs
//
// Refactor this code so that instead of passing `vec0` into the `fill_vec`
// function, the Vector gets created in the function itself and passed back to
// the main function.
//
// Execute `rustlings hint move_semantics4` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let mut vec1 = fill_vec();

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);

vec1.push(88);

println!("{} has length {} content `{:?}`", "vec1", vec1.len(), vec1);
}

// `fill_vec()` no longer takes `vec: Vec<i32>` as argument
fn fill_vec() -> Vec<i32> {
let mut vec : Vec<i32> = Vec::new();

vec.push(22);
vec.push(44);
vec.push(66);

vec
}

move_semantics5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// move_semantics5.rs
//
// Make me compile only by reordering the lines in `main()`, but without adding,
// changing or removing any of them.
//
// Execute `rustlings hint move_semantics5` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let mut x = 100;
let y = &mut x;
*y += 100;
let z = &mut x;
*z += 1000;
assert_eq!(x, 1200);
}

move_semantics6.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// move_semantics6.rs
//
// You can't change anything except adding or removing references.
//
// Execute `rustlings hint move_semantics6` or use the `hint` watch subcommand
// for a hint.

// I AM DONE

fn main() {
let data = "Rust is great!".to_string();

get_char(&data);

string_uppercase(&data);
}

// Should not take ownership
fn get_char(data: &String) -> char {
data.chars().last().unwrap()
}

// Should take ownership
fn string_uppercase(mut data: &String) {
let data = data.to_uppercase();

println!("{}", data);
}

struct

struct1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// structs1.rs
//
// Address all the TODOs to make the tests pass!
//
// Execute `rustlings hint structs1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

struct ColorClassicStruct {
red : i32,
green : i32,
blue : i32,
}

struct ColorTupleStruct(i32, i32, i32);

#[derive(Debug)]
struct UnitLikeStruct;

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn classic_c_structs() {
// TODO: Instantiate a classic c struct!
let green = ColorClassicStruct{
red : 0,
green : 255,
blue : 0,
};

assert_eq!(green.red, 0);
assert_eq!(green.green, 255);
assert_eq!(green.blue, 0);
}

#[test]
fn tuple_structs() {
// TODO: Instantiate a tuple struct!
let green = ColorTupleStruct(0, 255, 0);

assert_eq!(green.0, 0);
assert_eq!(green.1, 255);
assert_eq!(green.2, 0);
}

#[test]
fn unit_structs() {
// TODO: Instantiate a unit-like struct!
let unit_like_struct = UnitLikeStruct;
let message = format!("{:?}s are fun!", unit_like_struct);

assert_eq!(message, "UnitLikeStructs are fun!");
}
}

struct2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// structs2.rs
//
// Address all the TODOs to make the tests pass!
//
// Execute `rustlings hint structs2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[derive(Debug)]
struct Order {
name: String,
year: u32,
made_by_phone: bool,
made_by_mobile: bool,
made_by_email: bool,
item_number: u32,
count: u32,
}

fn create_order_template() -> Order {
Order {
name: String::from("Bob"),
year: 2019,
made_by_phone: false,
made_by_mobile: false,
made_by_email: true,
item_number: 123,
count: 0,
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn your_order() {
let order_template = create_order_template();
// TODO: Create your own order using the update syntax and template above!
let your_order = Order{
name : "Hacker in Rust".to_string(),
count : 1,
..order_template
};
assert_eq!(your_order.name, "Hacker in Rust");
assert_eq!(your_order.year, order_template.year);
assert_eq!(your_order.made_by_phone, order_template.made_by_phone);
assert_eq!(your_order.made_by_mobile, order_template.made_by_mobile);
assert_eq!(your_order.made_by_email, order_template.made_by_email);
assert_eq!(your_order.item_number, order_template.item_number);
assert_eq!(your_order.count, 1);
}
}

struct3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// structs3.rs
//
// Structs contain data, but can also have logic. In this exercise we have
// defined the Package struct and we want to test some logic attached to it.
// Make the code compile and the tests pass!
//
// Execute `rustlings hint structs3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[derive(Debug)]
struct Package {
sender_country: String,
recipient_country: String,
weight_in_grams: u32,
}

impl Package {
fn new(sender_country: String, recipient_country: String, weight_in_grams: u32) -> Package {
if weight_in_grams < 10 {
// This is not how you should handle errors in Rust,
// but we will learn about error handling later.
panic!("Can not ship a package with weight below 10 grams.")
} else {
Package {
sender_country,
recipient_country,
weight_in_grams,
}
}
}

fn is_international(&self) -> bool {
// Something goes here...
self.sender_country != self.recipient_country
}

fn get_fees(&self, cents_per_gram: u32) -> u32 {
// Something goes here...
self.weight_in_grams * cents_per_gram
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
#[should_panic]
fn fail_creating_weightless_package() {
let sender_country = String::from("Spain");
let recipient_country = String::from("Austria");

Package::new(sender_country, recipient_country, 5);
}

#[test]
fn create_international_package() {
let sender_country = String::from("Spain");
let recipient_country = String::from("Russia");

let package = Package::new(sender_country, recipient_country, 1200);

assert!(package.is_international());
}

#[test]
fn create_local_package() {
let sender_country = String::from("Canada");
let recipient_country = sender_country.clone();

let package = Package::new(sender_country, recipient_country, 1200);

assert!(!package.is_international());
}

#[test]
fn calculate_transport_fees() {
let sender_country = String::from("Spain");
let recipient_country = String::from("Spain");

let cents_per_gram = 3;

let package = Package::new(sender_country, recipient_country, 1500);

assert_eq!(package.get_fees(cents_per_gram), 4500);
assert_eq!(package.get_fees(cents_per_gram * 2), 9000);
}
}

enum

enum1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// enums1.rs
//
// No hints this time! ;)

// I AM DONE

#[derive(Debug)]
enum Message {
// TODO: define a few types of messages as used below
Quit,
Echo,
Move,
ChangeColor,
}

fn main() {
println!("{:?}", Message::Quit);
println!("{:?}", Message::Echo);
println!("{:?}", Message::Move);
println!("{:?}", Message::ChangeColor);
}

enum2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// enums2.rs
//
// Execute `rustlings hint enums2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[derive(Debug)]
enum Message {
// TODO: define the different variants used below
Move{x:u8, y:u8},
Echo(String),
ChangeColor(u8, u8, u8),
Quit,
}

impl Message {
fn call(&self) {
println!("{:?}", self);
}
}

fn main() {
let messages = [
Message::Move { x: 10, y: 30 },
Message::Echo(String::from("hello world")),
Message::ChangeColor(200, 255, 255),
Message::Quit,
];

for message in &messages {
message.call();
}
}

enum3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// enums3.rs
//
// Address all the TODOs to make the tests pass!
//
// Execute `rustlings hint enums3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

enum Message {
// TODO: implement the message variant types based on their usage below
ChangeColor(u8, u8, u8),
Move(Point),
Echo(String),
Quit,
}

struct Point {
x: u8,
y: u8,
}

struct State {
color: (u8, u8, u8),
position: Point,
quit: bool,
message: String
}

impl State {
fn change_color(&mut self, color: (u8, u8, u8)) {
self.color = color;
}

fn quit(&mut self) {
self.quit = true;
}

fn echo(&mut self, s: String) { self.message = s }

fn move_position(&mut self, p: Point) {
self.position = p;
}

fn process(&mut self, message: Message) {
// TODO: create a match expression to process the different message
// variants
// Remember: When passing a tuple as a function argument, you'll need
// extra parentheses: fn function((t, u, p, l, e))
match message {
Message::ChangeColor(r, g, b) => self.change_color((r, g, b)),
Message::Echo(s) => self.echo(s),
Message::Move(p) => self.move_position(p),
Message::Quit => self.quit(),
}
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_match_message_call() {
let mut state = State {
quit: false,
position: Point { x: 0, y: 0 },
color: (0, 0, 0),
message: "hello world".to_string(),
};
state.process(Message::ChangeColor(255, 0, 255));
state.process(Message::Echo(String::from("hello world")));
state.process(Message::Move(Point { x: 10, y: 15 }));
state.process(Message::Quit);

assert_eq!(state.color, (255, 0, 255));
assert_eq!(state.position.x, 10);
assert_eq!(state.position.y, 15);
assert_eq!(state.quit, true);
assert_eq!(state.message, "hello world");
}
}

string

string1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// strings1.rs
//
// Make me compile without changing the function signature!
//
// Execute `rustlings hint strings1` or use the `hint` watch subcommand for a
// hint.

// I AM ONE

fn main() {
let answer = current_favorite_color();
println!("My current favorite color is {}", answer);
}

fn current_favorite_color() -> String {
"blue".to_string()
}

string2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// strings2.rs
//
// Make me compile without changing the function signature!
//
// Execute `rustlings hint strings2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let word = String::from("green"); // Try not changing this line :)
if is_a_color_word(word) {
println!("That is a color word I know!");
} else {
println!("That is not a color word I know.");
}
}

fn is_a_color_word(attempt: String) -> bool {
attempt == "green" || attempt == "blue" || attempt == "red"
}

string3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// strings3.rs
//
// Execute `rustlings hint strings3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn trim_me(input: &str) -> String {
// TODO: Remove whitespace from both ends of a string!
input.trim().to_string()
}

fn compose_me(input: &str) -> String {
// TODO: Add " world!" to the string! There's multiple ways to do this!
format!("{input} world!")
}

fn replace_me(input: &str) -> String {
// TODO: Replace "cars" in the string with "balloons"!
input.replace("cars", "balloons")
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn trim_a_string() {
assert_eq!(trim_me("Hello! "), "Hello!");
assert_eq!(trim_me(" What's up!"), "What's up!");
assert_eq!(trim_me(" Hola! "), "Hola!");
}

#[test]
fn compose_a_string() {
assert_eq!(compose_me("Hello"), "Hello world!");
assert_eq!(compose_me("Goodbye"), "Goodbye world!");
}

#[test]
fn replace_a_string() {
assert_eq!(replace_me("I think cars are cool"), "I think balloons are cool");
assert_eq!(replace_me("I love to look at cars"), "I love to look at balloons");
}
}

string4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// strings4.rs
//
// Ok, here are a bunch of values-- some are `String`s, some are `&str`s. Your
// task is to call one of these two functions on each value depending on what
// you think each value is. That is, add either `string_slice` or `string`
// before the parentheses on each line. If you're right, it will compile!
//
// No hints this time!

// I AM DONE

fn string_slice(arg: &str) {
println!("{}", arg);
}
fn string(arg: String) {
println!("{}", arg);
}

fn main() {
string_slice("blue");
string("red".to_string());
string(String::from("hi"));
string("rust is fun!".to_owned());
string_slice("nice weather".into());
string(format!("Interpolation {}", "Station"));
string_slice(&String::from("abc")[0..1]);
string_slice(" hello there ".trim());
string("Happy Monday!".to_string().replace("Mon", "Tues"));
string("mY sHiFt KeY iS sTiCkY".to_lowercase());
}

modules

modules1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// modules1.rs
//
// Execute `rustlings hint modules1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

mod sausage_factory {
// Don't let anybody outside of this module see this!
fn get_secret_recipe() -> String {
String::from("Ginger")
}

pub fn make_sausage() {
get_secret_recipe();
println!("sausage!");
}
}

fn main() {
sausage_factory::make_sausage();
}

modules2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// modules2.rs
//
// You can bring module paths into scopes and provide new names for them with
// the 'use' and 'as' keywords. Fix these 'use' statements to make the code
// compile.
//
// Execute `rustlings hint modules2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

mod delicious_snacks {
// TODO: Fix these use statements
pub use self::fruits::PEAR as fruit;
pub use self::veggies::CUCUMBER as veggie;

mod fruits {
pub const PEAR: &'static str = "Pear";
pub const APPLE: &'static str = "Apple";
}

mod veggies {
pub const CUCUMBER: &'static str = "Cucumber";
pub const CARROT: &'static str = "Carrot";
}
}

fn main() {
println!(
"favorite snacks: {} and {}",
delicious_snacks::fruit,
delicious_snacks::veggie
);
}

modules3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// modules3.rs
//
// You can use the 'use' keyword to bring module paths from modules from
// anywhere and especially from the Rust standard library into your scope. Bring
// SystemTime and UNIX_EPOCH from the std::time module. Bonus style points if
// you can do it with one line!
//
// Execute `rustlings hint modules3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

// TODO: Complete this use statement
use std::time::{SystemTime, UNIX_EPOCH};

fn main() {
match SystemTime::now().duration_since(UNIX_EPOCH) {
Ok(n) => println!("1970-01-01 00:00:00 UTC was {} seconds ago!", n.as_secs()),
Err(_) => panic!("SystemTime before UNIX EPOCH!"),
}
}

hashmap

hashmap1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// hashmaps1.rs
//
// A basket of fruits in the form of a hash map needs to be defined. The key
// represents the name of the fruit and the value represents how many of that
// particular fruit is in the basket. You have to put at least three different
// types of fruits (e.g apple, banana, mango) in the basket and the total count
// of all the fruits should be at least five.
//
// Make me compile and pass the tests!
//
// Execute `rustlings hint hashmaps1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::collections::HashMap;

fn fruit_basket() -> HashMap<String, u32> {
let mut basket = HashMap::new();

// Two bananas are already given for you :)
basket.insert(String::from("banana"), 2);

// TODO: Put more fruits in your basket here.
basket.insert(String::from("apple"), 2);
basket.insert(String::from("mango"), 2);

basket
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn at_least_three_types_of_fruits() {
let basket = fruit_basket();
assert!(basket.len() >= 3);
}

#[test]
fn at_least_five_fruits() {
let basket = fruit_basket();
assert!(basket.values().sum::<u32>() >= 5);
}
}

hashmap2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// hashmaps2.rs
//
// We're collecting different fruits to bake a delicious fruit cake. For this,
// we have a basket, which we'll represent in the form of a hash map. The key
// represents the name of each fruit we collect and the value represents how
// many of that particular fruit we have collected. Three types of fruits -
// Apple (4), Mango (2) and Lychee (5) are already in the basket hash map. You
// must add fruit to the basket so that there is at least one of each kind and
// more than 11 in total - we have a lot of mouths to feed. You are not allowed
// to insert any more of these fruits!
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::collections::HashMap;

#[derive(Hash, PartialEq, Eq)]
enum Fruit {
Apple,
Banana,
Mango,
Lychee,
Pineapple,
}

fn fruit_basket(basket: &mut HashMap<Fruit, u32>) {
let fruit_kinds = vec![
Fruit::Apple,
Fruit::Banana,
Fruit::Mango,
Fruit::Lychee,
Fruit::Pineapple,
];

for fruit in fruit_kinds {
// TODO: Insert new fruits if they are not already present in the
// basket. Note that you are not allowed to put any type of fruit that's
// already present!
basket.entry(fruit).or_insert(1);
}
}

#[cfg(test)]
mod tests {
use super::*;

// Don't modify this function!
fn get_fruit_basket() -> HashMap<Fruit, u32> {
let mut basket = HashMap::<Fruit, u32>::new();
basket.insert(Fruit::Apple, 4);
basket.insert(Fruit::Mango, 2);
basket.insert(Fruit::Lychee, 5);

basket
}

#[test]
fn test_given_fruits_are_not_modified() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
assert_eq!(*basket.get(&Fruit::Apple).unwrap(), 4);
assert_eq!(*basket.get(&Fruit::Mango).unwrap(), 2);
assert_eq!(*basket.get(&Fruit::Lychee).unwrap(), 5);
}

#[test]
fn at_least_five_types_of_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count_fruit_kinds = basket.len();
assert!(count_fruit_kinds >= 5);
}

#[test]
fn greater_than_eleven_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count = basket.values().sum::<u32>();
assert!(count > 11);
}

#[test]
fn all_fruit_types_in_basket() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
for amount in basket.values() {
assert_ne!(amount, &0);
}
}
}

hashmap3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// hashmaps3.rs
//
// A list of scores (one per line) of a soccer match is given. Each line is of
// the form : "<team_1_name>,<team_2_name>,<team_1_goals>,<team_2_goals>"
// Example: England,France,4,2 (England scored 4 goals, France 2).
//
// You have to build a scores table containing the name of the team, goals the
// team scored, and goals the team conceded. One approach to build the scores
// table is to use a Hashmap. The solution is partially written to use a
// Hashmap, complete it to pass the test.
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::collections::HashMap;

// A structure to store the goal details of a team.
struct Team {
goals_scored: u8,
goals_conceded: u8,
}

fn build_scores_table(results: String) -> HashMap<String, Team> {
// The name of the team is the key and its associated struct is the value.
let mut scores: HashMap<String, Team> = HashMap::new();

for r in results.lines() {
let v: Vec<&str> = r.split(',').collect();
let team_1_name = v[0].to_string();
let team_1_score: u8 = v[2].parse().unwrap();
let team_2_name = v[1].to_string();
let team_2_score: u8 = v[3].parse().unwrap();
// TODO: Populate the scores table with details extracted from the
// current line. Keep in mind that goals scored by team_1
// will be the number of goals conceded from team_2, and similarly
// goals scored by team_2 will be the number of goals conceded by
// team_1.
scores.entry(team_1_name.clone()).or_insert(Team{
goals_scored : 0,
goals_conceded : 0,
});
scores.get_mut(&team_1_name).unwrap().goals_scored += team_1_score;
scores.get_mut(&team_1_name).unwrap().goals_conceded += team_2_score;

scores.entry(team_2_name.clone()).or_insert(Team{
goals_scored : 0,
goals_conceded : 0,
});
scores.get_mut(&team_2_name).unwrap().goals_scored += team_2_score;
scores.get_mut(&team_2_name).unwrap().goals_conceded += team_1_score;
}
scores
}

#[cfg(test)]
mod tests {
use super::*;

fn get_results() -> String {
let results = "".to_string()
+ "England,France,4,2\n"
+ "France,Italy,3,1\n"
+ "Poland,Spain,2,0\n"
+ "Germany,England,2,1\n";
results
}

#[test]
fn build_scores() {
let scores = build_scores_table(get_results());

let mut keys: Vec<&String> = scores.keys().collect();
keys.sort();
assert_eq!(
keys,
vec!["England", "France", "Germany", "Italy", "Poland", "Spain"]
);
}

#[test]
fn validate_team_score_1() {
let scores = build_scores_table(get_results());
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 5);
assert_eq!(team.goals_conceded, 4);
}

#[test]
fn validate_team_score_2() {
let scores = build_scores_table(get_results());
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 2);
}
}

option

option1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// options1.rs
//
// Execute `rustlings hint options1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

// This function returns how much icecream there is left in the fridge.
// If it's before 10PM, there's 5 pieces left. At 10PM, someone eats them
// all, so there'll be no more left :(
fn maybe_icecream(time_of_day: u16) -> Option<u16> {
// We use the 24-hour system here, so 10PM is a value of 22 and 12AM is a
// value of 0 The Option output should gracefully handle cases where
// time_of_day > 23.
// TODO: Complete the function body - remember to return an Option!
if time_of_day <= 10 {
Some(5)
} else if time_of_day > 23 {
None
} else {
Some(0)
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn check_icecream() {
assert_eq!(maybe_icecream(9), Some(5));
assert_eq!(maybe_icecream(10), Some(5));
assert_eq!(maybe_icecream(23), Some(0));
assert_eq!(maybe_icecream(22), Some(0));
assert_eq!(maybe_icecream(25), None);
}

#[test]
fn raw_value() {
// TODO: Fix this test. How do you get at the value contained in the
// Option?
let icecreams = maybe_icecream(10).unwrap();
assert_eq!(icecreams, 5);
}
}

option2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// options2.rs
//
// Execute `rustlings hint options2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[cfg(test)]
mod tests {
#[test]
fn simple_option() {
let target = "rustlings";
let optional_target = Some(target);

// TODO: Make this an if let statement whose value is "Some" type
if let Some(word) = optional_target {
assert_eq!(word, target);
}
}

#[test]
fn layered_option() {
let range = 10;
let mut optional_integers: Vec<Option<i8>> = vec![None];

for i in 1..(range + 1) {
optional_integers.push(Some(i));
}

let mut cursor = range;

// TODO: make this a while let statement - remember that vector.pop also
// adds another layer of Option<T>. You can stack `Option<T>`s into
// while let and if let.
while let Some(Some(integer)) = optional_integers.pop() {
assert_eq!(integer, cursor);
cursor -= 1;
}

assert_eq!(cursor, 0);
}
}

option3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// options3.rs
//
// Execute `rustlings hint options3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

struct Point {
x: i32,
y: i32,
}

fn main() {
let y: Option<Point> = Some(Point { x: 100, y: 200 });

let y = match y {
Some(p) => println!("Co-ordinates are {},{} ", p.x, p.y),
None => panic!("no match!"),
};

y; // Fix without deleting this line.
}

error

error1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// errors1.rs
//
// This function refuses to generate text to be printed on a nametag if you pass
// it an empty string. It'd be nicer if it explained what the problem was,
// instead of just sometimes returning `None`. Thankfully, Rust has a similar
// construct to `Option` that can be used to express error conditions. Let's use
// it!
//
// Execute `rustlings hint errors1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub fn generate_nametag_text(name: String) -> Result<String, String> {
if name.is_empty() {
// Empty names aren't allowed.
Err("`name` was empty; it must be nonempty.".into())
} else {
Ok(format!("Hi! My name is {}", name))
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn generates_nametag_text_for_a_nonempty_name() {
assert_eq!(
generate_nametag_text("Beyoncé".into()),
Ok("Hi! My name is Beyoncé".into())
);
}

#[test]
fn explains_why_generating_nametag_text_fails() {
assert_eq!(
generate_nametag_text("".into()),
// Don't change this line
Err("`name` was empty; it must be nonempty.".into())
);
}
}

error2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// errors2.rs
//
// Say we're writing a game where you can buy items with tokens. All items cost
// 5 tokens, and whenever you purchase items there is a processing fee of 1
// token. A player of the game will type in how many items they want to buy, and
// the `total_cost` function will calculate the total cost of the tokens. Since
// the player typed in the quantity, though, we get it as a string-- and they
// might have typed anything, not just numbers!
//
// Right now, this function isn't handling the error case at all (and isn't
// handling the success case properly either). What we want to do is: if we call
// the `total_cost` function on a string that is not a number, that function
// will return a `ParseIntError`, and in that case, we want to immediately
// return that error from our function and not try to multiply and add.
//
// There are at least two ways to implement this that are both correct-- but one
// is a lot shorter!
//
// Execute `rustlings hint errors2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::num::ParseIntError;

pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
let processing_fee = 1;
let cost_per_item = 5;
let qty = item_quantity.parse::<i32>()?;

Ok(qty * cost_per_item + processing_fee)
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn item_quantity_is_a_valid_number() {
assert_eq!(total_cost("34"), Ok(171));
}

#[test]
fn item_quantity_is_an_invalid_number() {
assert_eq!(
total_cost("beep boop").unwrap_err().to_string(),
"invalid digit found in string"
);
}
}

error3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// errors3.rs
//
// This is a program that is trying to use a completed version of the
// `total_cost` function from the previous exercise. It's not working though!
// Why not? What should we do to fix it?
//
// Execute `rustlings hint errors3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::num::ParseIntError;

fn main() {
let mut tokens = 100;
let pretend_user_input = "8";

let cost = total_cost(pretend_user_input);

match cost {
Ok(c) => {
if c > tokens {
println!("You can't afford that many!");
} else {
tokens -= c;
println!("You now have {} tokens.", tokens);
}
},
Err(e) => {},
}

}

pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
let processing_fee = 1;
let cost_per_item = 5;
let qty = item_quantity.parse::<i32>()?;

Ok(qty * cost_per_item + processing_fee)
}

error4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// errors4.rs
//
// Execute `rustlings hint errors4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}

impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
// Hmm... Why is this always returning an Ok value?
if value < 0 {
Err(CreationError::Negative)
} else if value == 0 {
Err(CreationError::Zero)
} else {
Ok(PositiveNonzeroInteger(value as u64))
}
}
}

#[test]
fn test_creation() {
assert!(PositiveNonzeroInteger::new(10).is_ok());
assert_eq!(
Err(CreationError::Negative),
PositiveNonzeroInteger::new(-10)
);
assert_eq!(Err(CreationError::Zero), PositiveNonzeroInteger::new(0));
}

error5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// errors5.rs
//
// This program uses an altered version of the code from errors4.
//
// This exercise uses some concepts that we won't get to until later in the
// course, like `Box` and the `From` trait. It's not important to understand
// them in detail right now, but you can read ahead if you like. For now, think
// of the `Box<dyn ???>` type as an "I want anything that does ???" type, which,
// given Rust's usual standards for runtime safety, should strike you as
// somewhat lenient!
//
// In short, this particular use case for boxes is for when you want to own a
// value and you care only that it is a type which implements a particular
// trait. To do so, The Box is declared as of type Box<dyn Trait> where Trait is
// the trait the compiler looks for on any value used in that context. For this
// exercise, that context is the potential errors which can be returned in a
// Result.
//
// What can we use to describe both errors? In other words, is there a trait
// which both errors implement?
//
// Execute `rustlings hint errors5` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::error;
use std::fmt;
use std::num::ParseIntError;

// TODO: update the return type of `main()` to make this compile.
fn main() -> Result<(), Box<dyn error::Error>> {
let pretend_user_input = "42";
let x: i64 = pretend_user_input.parse()?;
println!("output={:?}", PositiveNonzeroInteger::new(x)?);
Ok(())
}

// Don't change anything below this line.

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}

impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value {
x if x < 0 => Err(CreationError::Negative),
x if x == 0 => Err(CreationError::Zero),
x => Ok(PositiveNonzeroInteger(x as u64)),
}
}
}

// This is required so that `CreationError` can implement `error::Error`.
impl fmt::Display for CreationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match *self {
CreationError::Negative => "number is negative",
CreationError::Zero => "number is zero",
};
f.write_str(description)
}
}

impl error::Error for CreationError {}

error6.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// errors6.rs
//
// Using catch-all error types like `Box<dyn error::Error>` isn't recommended
// for library code, where callers might want to make decisions based on the
// error content, instead of printing it out or propagating it further. Here, we
// define a custom error type to make it possible for callers to decide what to
// do next when our function returns an error.
//
// Execute `rustlings hint errors6` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::num::ParseIntError;

// This is a custom error type that we will be using in `parse_pos_nonzero()`.
#[derive(PartialEq, Debug)]
enum ParsePosNonzeroError {
Creation(CreationError),
ParseInt(ParseIntError),
}

impl ParsePosNonzeroError {
fn from_creation(err: CreationError) -> ParsePosNonzeroError {
ParsePosNonzeroError::Creation(err)
}
// TODO: add another error conversion function here.
fn from_parseint(err: ParseIntError) -> ParsePosNonzeroError {
ParsePosNonzeroError::ParseInt(err)
}
}

fn parse_pos_nonzero(s: &str) -> Result<PositiveNonzeroInteger, ParsePosNonzeroError> {
// TODO: change this to return an appropriate error instead of panicking
// when `parse()` returns an error.
let x: i64 = s.parse().map_err(ParsePosNonzeroError::from_parseint)?;
PositiveNonzeroInteger::new(x).map_err(ParsePosNonzeroError::from_creation)
}

// Don't change anything below this line.

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
Negative,
Zero,
}

impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value {
x if x < 0 => Err(CreationError::Negative),
x if x == 0 => Err(CreationError::Zero),
x => Ok(PositiveNonzeroInteger(x as u64)),
}
}
}

#[cfg(test)]
mod test {
use super::*;

#[test]
fn test_parse_error() {
// We can't construct a ParseIntError, so we have to pattern match.
assert!(matches!(
parse_pos_nonzero("not a number"),
Err(ParsePosNonzeroError::ParseInt(_))
));
}

#[test]
fn test_negative() {
assert_eq!(
parse_pos_nonzero("-555"),
Err(ParsePosNonzeroError::Creation(CreationError::Negative))
);
}

#[test]
fn test_zero() {
assert_eq!(
parse_pos_nonzero("0"),
Err(ParsePosNonzeroError::Creation(CreationError::Zero))
);
}

#[test]
fn test_positive() {
let x = PositiveNonzeroInteger::new(42);
assert!(x.is_ok());
assert_eq!(parse_pos_nonzero("42"), Ok(x.unwrap()));
}
}

generics

generics1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// generics1.rs
//
// This shopping list program isn't compiling! Use your knowledge of generics to
// fix it.
//
// Execute `rustlings hint generics1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let mut shopping_list: Vec<&str> = Vec::new();
shopping_list.push("milk");
}

generics1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// generics2.rs
//
// This powerful wrapper provides the ability to store a positive integer value.
// Rewrite it using generics so that it supports wrapping ANY type.
//
// Execute `rustlings hint generics2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

struct Wrapper<T> {
value: T,
}

impl<T> Wrapper<T> {
pub fn new(value: T) -> Self {
Wrapper { value }
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn store_u32_in_wrapper() {
assert_eq!(Wrapper::new(42).value, 42);
}

#[test]
fn store_str_in_wrapper() {
assert_eq!(Wrapper::new("Foo").value, "Foo");
}
}

traits

traits1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// traits1.rs
//
// Time to implement some traits! Your task is to implement the trait
// `AppendBar` for the type `String`. The trait AppendBar has only one function,
// which appends "Bar" to any object implementing this trait.
//
// Execute `rustlings hint traits1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

trait AppendBar {
fn append_bar(self) -> Self;
}

impl AppendBar for String {
// TODO: Implement `AppendBar` for type `String`.
fn append_bar(self) -> Self {
format!("{self}Bar")
}
}

fn main() {
let s = String::from("Foo");
let s = s.append_bar();
println!("s: {}", s);
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn is_foo_bar() {
assert_eq!(String::from("Foo").append_bar(), String::from("FooBar"));
}

#[test]
fn is_bar_bar() {
assert_eq!(
String::from("").append_bar().append_bar(),
String::from("BarBar")
);
}
}

traits2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// traits2.rs
//
// Your task is to implement the trait `AppendBar` for a vector of strings. To
// implement this trait, consider for a moment what it means to 'append "Bar"'
// to a vector of strings.
//
// No boiler plate code this time, you can do this!
//
// Execute `rustlings hint traits2` or use the `hint` watch subcommand for a hint.

// I AM DONE

trait AppendBar {
fn append_bar(self) -> Self;
}

// TODO: Implement trait `AppendBar` for a vector of strings.
impl AppendBar for Vec<String> {
fn append_bar(mut self) -> Self {
self.push("Bar".to_string());
self
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn is_vec_pop_eq_bar() {
let mut foo = vec![String::from("Foo")].append_bar();
assert_eq!(foo.pop().unwrap(), String::from("Bar"));
assert_eq!(foo.pop().unwrap(), String::from("Foo"));
}
}

traits3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// traits3.rs
//
// Your task is to implement the Licensed trait for both structures and have
// them return the same information without writing the same function twice.
//
// Consider what you can add to the Licensed trait.
//
// Execute `rustlings hint traits3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub trait Licensed {
fn licensing_info(&self) -> String {
"Some information".to_string()
}
}

struct SomeSoftware {
version_number: i32,
}

struct OtherSoftware {
version_number: String,
}

impl Licensed for SomeSoftware {} // Don't edit this line
impl Licensed for OtherSoftware {} // Don't edit this line

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn is_licensing_info_the_same() {
let licensing_info = String::from("Some information");
let some_software = SomeSoftware { version_number: 1 };
let other_software = OtherSoftware {
version_number: "v2.0.0".to_string(),
};
assert_eq!(some_software.licensing_info(), licensing_info);
assert_eq!(other_software.licensing_info(), licensing_info);
}
}

traits4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// traits4.rs
//
// Your task is to replace the '??' sections so the code compiles.
//
// Don't change any line other than the marked one.
//
// Execute `rustlings hint traits4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub trait Licensed {
fn licensing_info(&self) -> String {
"some information".to_string()
}
}

struct SomeSoftware {}

struct OtherSoftware {}

impl Licensed for SomeSoftware {}
impl Licensed for OtherSoftware {}

// YOU MAY ONLY CHANGE THE NEXT LINE
fn compare_license_types(software: impl Licensed, software_two: impl Licensed) -> bool {
software.licensing_info() == software_two.licensing_info()
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn compare_license_information() {
let some_software = SomeSoftware {};
let other_software = OtherSoftware {};

assert!(compare_license_types(some_software, other_software));
}

#[test]
fn compare_license_information_backwards() {
let some_software = SomeSoftware {};
let other_software = OtherSoftware {};

assert!(compare_license_types(other_software, some_software));
}
}

traits5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// traits5.rs
//
// Your task is to replace the '??' sections so the code compiles.
//
// Don't change any line other than the marked one.
//
// Execute `rustlings hint traits5` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub trait SomeTrait {
fn some_function(&self) -> bool {
true
}
}

pub trait OtherTrait {
fn other_function(&self) -> bool {
true
}
}

struct SomeStruct {}
struct OtherStruct {}

impl SomeTrait for SomeStruct {}
impl OtherTrait for SomeStruct {}
impl SomeTrait for OtherStruct {}
impl OtherTrait for OtherStruct {}

// YOU MAY ONLY CHANGE THE NEXT LINE
fn some_func(item: impl SomeTrait + OtherTrait) -> bool {
item.some_function() && item.other_function()
}

fn main() {
some_func(SomeStruct {});
some_func(OtherStruct {});
}

lifetime

lifetime1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// lifetimes1.rs
//
// The Rust compiler needs to know how to check whether supplied references are
// valid, so that it can let the programmer know if a reference is at risk of
// going out of scope before it is used. Remember, references are borrows and do
// not own their own data. What if their owner goes out of scope?
//
// Execute `rustlings hint lifetimes1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}

fn main() {
let string1 = String::from("abcd");
let string2 = "xyz";

let result = longest(string1.as_str(), string2);
println!("The longest string is '{}'", result);
}

lifetime2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// lifetimes2.rs
//
// So if the compiler is just validating the references passed to the annotated
// parameters and the return type, what do we need to change?
//
// Execute `rustlings hint lifetimes2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}

fn main() {
let string1 = String::from("long string is long");
let result;
{
let string2 = String::from("xyz");
result = longest(string1.as_str(), string2.as_str());
println!("The longest string is '{}'", result);
}
}

lifetime3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// lifetimes3.rs
//
// Lifetimes are also needed when structs hold references.
//
// Execute `rustlings hint lifetimes3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

struct Book<'a> {
author: &'a str,
title: &'a str,
}

fn main() {
let name = String::from("Jill Smith");
let title = String::from("Fish Flying");
let book = Book { author: &name, title: &title };

println!("{} by {}", book.title, book.author);
}

test

test1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// tests1.rs
//
// Tests are important to ensure that your code does what you think it should
// do. Tests can be run on this file with the following command: rustlings run
// tests1
//
// This test has a problem with it -- make the test compile! Make the test pass!
// Make the test fail!
//
// Execute `rustlings hint tests1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[cfg(test)]
mod tests {
#[test]
fn you_can_assert() {
assert!(true);
}
}

test2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// tests2.rs
//
// This test has a problem with it -- make the test compile! Make the test pass!
// Make the test fail!
//
// Execute `rustlings hint tests2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[cfg(test)]
mod tests {
#[test]
fn you_can_assert_eq() {
assert_eq!(true, true);
}
}

test3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// tests3.rs
//
// This test isn't testing our function -- make it do that in such a way that
// the test passes. Then write a second test that tests whether we get the
// result we expect to get when we call `is_even(5)`.
//
// Execute `rustlings hint tests3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub fn is_even(num: i32) -> bool {
num % 2 == 0
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn is_true_when_even() {
assert!(is_even(2));
}

#[test]
fn is_false_when_odd() {
assert!(!is_even(5));
}
}

test4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// tests4.rs
//
// Make sure that we're testing for the correct conditions!
//
// Execute `rustlings hint tests4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

struct Rectangle {
width: i32,
height: i32
}

impl Rectangle {
// Only change the test functions themselves
pub fn new(width: i32, height: i32) -> Self {
if width <= 0 || height <= 0 {
panic!("Rectangle width and height cannot be negative!")
}
Rectangle {width, height}
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn correct_width_and_height() {
// This test should check if the rectangle is the size that we pass into its constructor
let rect = Rectangle::new(10, 20);
assert_eq!(rect.width, 10); // check width
assert_eq!(rect.height, 20); // check height
}

#[test]
#[should_panic (expected = "negative")]
fn negative_width() {
// This test should check if program panics when we try to create rectangle with negative width
let _rect = Rectangle::new(-10, 10);
}

#[test]
#[should_panic (expected = "negative")]
fn negative_height() {
// This test should check if program panics when we try to create rectangle with negative height
let _rect = Rectangle::new(10, -10);
}
}

iterators

iterators1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// iterators1.rs
//
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
//
// Make me compile by filling in the `???`s
//
// Execute `rustlings hint iterators1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let my_fav_fruits = vec!["banana", "custard apple", "avocado", "peach", "raspberry"];

let mut my_iterable_fav_fruits = my_fav_fruits.iter(); // TODO: Step 1

assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"custard apple")); // TODO: Step 2
assert_eq!(my_iterable_fav_fruits.next(), Some(&"avocado"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"peach")); // TODO: Step 3
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
assert_eq!(my_iterable_fav_fruits.next(), None); // TODO: Step 4
}

iterators2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// iterators2.rs
//
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer. Follow the steps to complete the exercise.
//
// Execute `rustlings hint iterators2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

// Step 1.
// Complete the `capitalize_first` function.
// "hello" -> "Hello"
pub fn capitalize_first(input: &str) -> String {
let mut c = input.chars();
match c.next() {
None => String::new(),
Some(first) => first.to_uppercase().collect::<String>() + c.as_str(),
}
}

// Step 2.
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
pub fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
let mut res = vec![];
for word in words {
res.push(capitalize_first(word))
}
res
}

// Step 3.
// Apply the `capitalize_first` function again to a slice of string slices.
// Return a single string.
// ["hello", " ", "world"] -> "Hello World"
pub fn capitalize_words_string(words: &[&str]) -> String {
let mut res = String::new();
for word in words {
res += &capitalize_first(word);
}
res
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_success() {
assert_eq!(capitalize_first("hello"), "Hello");
}

#[test]
fn test_empty() {
assert_eq!(capitalize_first(""), "");
}

#[test]
fn test_iterate_string_vec() {
let words = vec!["hello", "world"];
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
}

#[test]
fn test_iterate_into_string() {
let words = vec!["hello", " ", "world"];
assert_eq!(capitalize_words_string(&words), "Hello World");
}
}

iterators3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// iterators3.rs
//
// This is a bigger exercise than most of the others! You can do it! Here is
// your mission, should you choose to accept it:
// 1. Complete the divide function to get the first four tests to pass.
// 2. Get the remaining tests to pass by completing the result_with_list and
// list_of_results functions.
//
// Execute `rustlings hint iterators3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[derive(Debug, PartialEq, Eq)]
pub enum DivisionError {
NotDivisible(NotDivisibleError),
DivideByZero,
}

#[derive(Debug, PartialEq, Eq)]
pub struct NotDivisibleError {
dividend: i32,
divisor: i32,
}

// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
pub fn divide(a: i32, b: i32) -> Result<i32, DivisionError> {
if b == 0 {
Err(DivisionError::DivideByZero)
} else if a % b == 0 {
Ok(a / b)
} else {
Err(DivisionError::NotDivisible(NotDivisibleError{
dividend : a,
divisor : b,
}))
}
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: Ok([1, 11, 1426, 3])
fn result_with_list() -> Result<Vec<i32>, DivisionError> {
let numbers = vec![27, 297, 38502, 81];
let mut res : Vec<i32> = vec![];
for num in numbers {
res.push(divide(num, 27)?)
}
Ok(res)
}

// Complete the function and return a value of the correct type so the test
// passes.
// Desired output: [Ok(1), Ok(11), Ok(1426), Ok(3)]
fn list_of_results() -> Vec<Result<i32, DivisionError>> {
let numbers = vec![27, 297, 38502, 81];
let mut res : Vec<Result<i32, DivisionError>> = vec![];
for num in numbers {
res.push(divide(num, 27))
}
res
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}

#[test]
fn test_not_divisible() {
assert_eq!(
divide(81, 6),
Err(DivisionError::NotDivisible(NotDivisibleError {
dividend: 81,
divisor: 6
}))
);
}

#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}

#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}

#[test]
fn test_result_with_list() {
assert_eq!(format!("{:?}", result_with_list()), "Ok([1, 11, 1426, 3])");
}

#[test]
fn test_list_of_results() {
assert_eq!(
format!("{:?}", list_of_results()),
"[Ok(1), Ok(11), Ok(1426), Ok(3)]"
);
}
}

iterators4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// iterators4.rs
//
// Execute `rustlings hint iterators4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

pub fn factorial(num: u64) -> u64 {
// Complete this function to return the factorial of num
// Do not use:
// - return
// Try not to use:
// - imperative style loops (for, while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
// Execute `rustlings hint iterators4` for hints.
if num <= 1 {
1
} else {
num * factorial(num - 1)
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn factorial_of_0() {
assert_eq!(1, factorial(0));
}

#[test]
fn factorial_of_1() {
assert_eq!(1, factorial(1));
}
#[test]
fn factorial_of_2() {
assert_eq!(2, factorial(2));
}

#[test]
fn factorial_of_4() {
assert_eq!(24, factorial(4));
}
}

iterators5.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// iterators5.rs
//
// Let's define a simple model to track Rustlings exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try not to use imperative loops (for, while).
// Only the two iterator methods (count_iterator and count_collection_iterator)
// need to be modified.
//
// Execute `rustlings hint iterators5` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::collections::HashMap;

#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}

fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if val == &value {
count += 1;
}
}
count
}

fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// map is a hashmap with String keys and Progress values.
// map = { "variables1": Complete, "from_str": None, ... }
let mut count = 0;
for val in map.values() {
if val == &value {
count += 1;
}
}
count
}

fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
for val in map.values() {
if val == &value {
count += 1;
}
}
}
count
}

fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// collection is a slice of hashmaps.
// collection = [{ "variables1": Complete, "from_str": None, ... },
// { "variables2": Complete, ... }, ... ]
let mut count = 0;
for map in collection {
for val in map.values() {
if val == &value {
count += 1;
}
}
}
count
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn count_complete() {
let map = get_map();
assert_eq!(3, count_iterator(&map, Progress::Complete));
}

#[test]
fn count_some() {
let map = get_map();
assert_eq!(1, count_iterator(&map, Progress::Some));
}

#[test]
fn count_none() {
let map = get_map();
assert_eq!(2, count_iterator(&map, Progress::None));
}

#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state)
);
}
}

#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
6,
count_collection_iterator(&collection, Progress::Complete)
);
}

#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(1, count_collection_iterator(&collection, Progress::Some));
}

#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(4, count_collection_iterator(&collection, Progress::None));
}

#[test]
fn count_collection_equals_for() {
let progress_states = vec![Progress::Complete, Progress::Some, Progress::None];
let collection = get_vec_map();

for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state)
);
}
}

fn get_map() -> HashMap<String, Progress> {
use Progress::*;

let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);

map
}

fn get_vec_map() -> Vec<HashMap<String, Progress>> {
use Progress::*;

let map = get_map();

let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);

vec![map, other]
}
}

smart_pointer

box1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// box1.rs
//
// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the `cons list` - a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: the value of the current item and
// the next item. The last item is a value called `Nil`.
//
// Step 1: use a `Box` in the enum definition to make the code compile
// Step 2: create both empty and non-empty cons lists by replacing `todo!()`
//
// Note: the tests should not be changed
//
// Execute `rustlings hint box1` or use the `hint` watch subcommand for a hint.

// I AM DONE

#[derive(PartialEq, Debug)]
pub enum List {
Cons(i32, Box<List>),
Nil,
}

fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list()
);
}

pub fn create_empty_list() -> List {
List::Nil
}

pub fn create_non_empty_list() -> List {
List::Cons(0, Box::new(List::Nil))
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_create_empty_list() {
assert_eq!(List::Nil, create_empty_list())
}

#[test]
fn test_create_non_empty_list() {
assert_ne!(create_empty_list(), create_non_empty_list())
}
}

rc1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// rc1.rs
//
// In this exercise, we want to express the concept of multiple owners via the
// Rc<T> type. This is a model of our solar system - there is a Sun type and
// multiple Planets. The Planets take ownership of the sun, indicating that they
// revolve around the sun.
//
// Make this code compile by using the proper Rc primitives to express that the
// sun has multiple owners.
//
// Execute `rustlings hint rc1` or use the `hint` watch subcommand for a hint.

// I AM DONE

use std::rc::Rc;

#[derive(Debug)]
struct Sun {}

#[derive(Debug)]
enum Planet {
Mercury(Rc<Sun>),
Venus(Rc<Sun>),
Earth(Rc<Sun>),
Mars(Rc<Sun>),
Jupiter(Rc<Sun>),
Saturn(Rc<Sun>),
Uranus(Rc<Sun>),
Neptune(Rc<Sun>),
}

impl Planet {
fn details(&self) {
println!("Hi from {:?}!", self)
}
}

fn main() {
let sun = Rc::new(Sun {});
println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

let mercury = Planet::Mercury(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 2 references
mercury.details();

let venus = Planet::Venus(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 3 references
venus.details();

let earth = Planet::Earth(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 4 references
earth.details();

let mars = Planet::Mars(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 5 references
mars.details();

let jupiter = Planet::Jupiter(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 6 references
jupiter.details();

// TODO
let saturn = Planet::Saturn(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 7 references
saturn.details();

// TODO
let uranus = Planet::Uranus(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 8 references
uranus.details();

// TODO
let neptune = Planet::Neptune(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 9 references
neptune.details();

assert_eq!(Rc::strong_count(&sun), 9);

drop(neptune);
println!("reference count = {}", Rc::strong_count(&sun)); // 8 references

drop(uranus);
println!("reference count = {}", Rc::strong_count(&sun)); // 7 references

drop(saturn);
println!("reference count = {}", Rc::strong_count(&sun)); // 6 references

drop(jupiter);
println!("reference count = {}", Rc::strong_count(&sun)); // 5 references

drop(mars);
println!("reference count = {}", Rc::strong_count(&sun)); // 4 references

// TODO
drop(earth);
println!("reference count = {}", Rc::strong_count(&sun)); // 3 references

// TODO
drop(venus);
println!("reference count = {}", Rc::strong_count(&sun)); // 2 references

// TODO
drop(mercury);
println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

assert_eq!(Rc::strong_count(&sun), 1);
}

arc1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// arc1.rs
//
// In this exercise, we are given a Vec of u32 called "numbers" with values
// ranging from 0 to 99 -- [ 0, 1, 2, ..., 98, 99 ] We would like to use this
// set of numbers within 8 different threads simultaneously. Each thread is
// going to get the sum of every eighth value, with an offset.
//
// The first thread (offset 0), will sum 0, 8, 16, ...
// The second thread (offset 1), will sum 1, 9, 17, ...
// The third thread (offset 2), will sum 2, 10, 18, ...
// ...
// The eighth thread (offset 7), will sum 7, 15, 23, ...
//
// Because we are using threads, our values need to be thread-safe. Therefore,
// we are using Arc. We need to make a change in each of the two TODOs.
//
// Make this code compile by filling in a value for `shared_numbers` where the
// first TODO comment is, and create an initial binding for `child_numbers`
// where the second TODO comment is. Try not to create any copies of the
// `numbers` Vec!
//
// Execute `rustlings hint arc1` or use the `hint` watch subcommand for a hint.

// I AM DONE

#![forbid(unused_imports)] // Do not change this, (or the next) line.
use std::sync::Arc;
use std::thread;

fn main() {
let numbers: Vec<_> = (0..100u32).collect();
let shared_numbers = Arc::new(&numbers);
let mut joinhandles = Vec::new();

for offset in 0..8 {
let child_numbers = numbers.clone();
joinhandles.push(thread::spawn(move || {
let sum: u32 = child_numbers.iter().filter(|&&n| n % 8 == offset).sum();
println!("Sum of offset {} is {}", offset, sum);
}));
}
for handle in joinhandles.into_iter() {
handle.join().unwrap();
}
}

cow1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// cow1.rs
//
// This exercise explores the Cow, or Clone-On-Write type. Cow is a
// clone-on-write smart pointer. It can enclose and provide immutable access to
// borrowed data, and clone the data lazily when mutation or ownership is
// required. The type is designed to work with general borrowed data via the
// Borrow trait.
//
// This exercise is meant to show you what to expect when passing data to Cow.
// Fix the unit tests by checking for Cow::Owned(_) and Cow::Borrowed(_) at the
// TODO markers.
//
// Execute `rustlings hint cow1` or use the `hint` watch subcommand for a hint.

// I AM DONE

use std::borrow::Cow;

fn abs_all<'a, 'b>(input: &'a mut Cow<'b, [i32]>) -> &'a mut Cow<'b, [i32]> {
for i in 0..input.len() {
let v = input[i];
if v < 0 {
// Clones into a vector if not already owned.
input.to_mut()[i] = -v;
}
}
input
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn reference_mutation() -> Result<(), &'static str> {
// Clone occurs because `input` needs to be mutated.
let slice = [-1, 0, 1];
let mut input = Cow::from(&slice[..]);
match abs_all(&mut input) {
Cow::Owned(_) => Ok(()),
_ => Err("Expected owned value"),
}
}

#[test]
fn reference_no_mutation() -> Result<(), &'static str> {
// No clone occurs because `input` doesn't need to be mutated.
let slice = [0, 1, 2];
let mut input = Cow::from(&slice[..]);
match abs_all(&mut input) {
// TODO
Cow::Borrowed(_) => Ok(()),
_ => panic!("expected borrowed value"),
}
}

#[test]
fn owned_no_mutation() -> Result<(), &'static str> {
// We can also pass `slice` without `&` so Cow owns it directly. In this
// case no mutation occurs and thus also no clone, but the result is
// still owned because it was never borrowed or mutated.
let slice = vec![0, 1, 2];
let mut input = Cow::from(slice);
match abs_all(&mut input) {
// TODO
Cow::Owned(_) => Ok(()),
_ => panic!("expected owned value"),
}
}

#[test]
fn owned_mutation() -> Result<(), &'static str> {
// Of course this is also the case if a mutation does occur. In this
// case the call to `to_mut()` returns a reference to the same data as
// before.
let slice = vec![-1, 0, 1];
let mut input = Cow::from(slice);
match abs_all(&mut input) {
// TODO
Cow::Owned(_) => Ok(()),
_ => panic!("expected borrowed value"),
}
}
}

threads

threads1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// threads1.rs
//
// This program spawns multiple threads that each run for at least 250ms, and
// each thread returns how much time they took to complete. The program should
// wait until all the spawned threads have finished and should collect their
// return values into a vector.
//
// Execute `rustlings hint threads1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::thread;
use std::time::{Duration, Instant};

fn main() {
let mut handles = vec![];
for i in 0..10 {
handles.push(thread::spawn(move || {
let start = Instant::now();
thread::sleep(Duration::from_millis(250));
println!("thread {} is complete", i);
start.elapsed().as_millis()
}));
}

let mut results: Vec<u128> = vec![];
for handle in handles {
// TODO: a struct is returned from thread::spawn, can you use it?
if let temp = handle.join() {
results.push(temp.unwrap());
}
}

if results.len() != 10 {
panic!("Oh no! All the spawned threads did not finish!");
}

println!();
for (i, result) in results.into_iter().enumerate() {
println!("thread {} took {}ms", i, result);
}
}

threads2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// threads2.rs
//
// Building on the last exercise, we want all of the threads to complete their
// work but this time the spawned threads need to be in charge of updating a
// shared value: JobStatus.jobs_completed
//
// Execute `rustlings hint threads2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

struct JobStatus {
jobs_completed: u32,
}

fn main() {
let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
let mut handles = vec![];
for _ in 0..10 {
let status_shared = Arc::clone(&status);
let handle = thread::spawn(move || {
thread::sleep(Duration::from_millis(250));
// TODO: You must take an action before you update a shared value
let mut status_shared = status_shared.lock().unwrap();
status_shared.jobs_completed += 1;
status_shared.jobs_completed
});
handles.push(handle);
}
for handle in handles {
let temp = handle.join().unwrap();
// TODO: Print the value of the JobStatus.jobs_completed. Did you notice
// anything interesting in the output? Do you have to 'join' on all the
// handles?
println!("jobs completed {}", temp);
}
}

threads3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// threads3.rs
//
// Execute `rustlings hint threads3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::sync::mpsc;
use std::sync::Arc;
use std::thread;
use std::time::Duration;

struct Queue {
length: u32,
first_half: Vec<u32>,
second_half: Vec<u32>,
}

impl Queue {
fn new() -> Self {
Queue {
length: 10,
first_half: vec![1, 2, 3, 4, 5],
second_half: vec![6, 7, 8, 9, 10],
}
}
}

fn send_tx(q: Queue, tx: mpsc::Sender<u32>) -> () {
let qc = Arc::new(q);
let qc1 = Arc::clone(&qc);
let qc2 = Arc::clone(&qc);

let tc = Arc::new(tx);
let tc1 = Arc::clone(&tc);
let tc2 = Arc::clone(&tc);

thread::spawn(move || {
for val in &qc1.first_half {
println!("sending {:?}", val);
tc1.send(*val).unwrap();
thread::sleep(Duration::from_secs(1));
}
});

thread::spawn(move || {
for val in &qc2.second_half {
println!("sending {:?}", val);
tc2.send(*val).unwrap();
thread::sleep(Duration::from_secs(1));
}
});
}

fn main() {
let (tx, rx) = mpsc::channel();
let queue = Queue::new();
let queue_length = queue.length;

send_tx(queue, tx);

let mut total_received: u32 = 0;
for received in rx {
println!("Got: {}", received);
total_received += 1;
}

println!("total numbers received: {}", total_received);
assert_eq!(total_received, queue_length)
}

macros

macros1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// macros1.rs
//
// Execute `rustlings hint macros1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}

fn main() {
my_macro!();
}

macros2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// macros2.rs
//
// Execute `rustlings hint macros2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}

fn main() {
my_macro!();
}

macros3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// macros3.rs
//
// Make me compile, without taking the macro out of the module!
//
// Execute `rustlings hint macros3` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[macro_use]
mod macros {
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
}

fn main() {
my_macro!();
}

macros4.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// macros4.rs
//
// Execute `rustlings hint macros4` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

#[rustfmt::skip]
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
($val:expr) => {
println!("Look at this other macro: {}", $val);
}
}

fn main() {
my_macro!();
my_macro!(7777);
}

clippy

clippy1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// clippy1.rs
//
// The Clippy tool is a collection of lints to analyze your code so you can
// catch common mistakes and improve your Rust code.
//
// For these exercises the code will fail to compile when there are clippy
// warnings check clippy's suggestions from the output to solve the exercise.
//
// Execute `rustlings hint clippy1` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

use std::f32;

fn main() {
// let pi = 3.14f32;
let pi = f32::consts::PI;
let radius = 5.00f32;

let area = pi * f32::powi(radius, 2);

println!(
"The area of a circle with radius {:.2} is {:.5}!",
radius, area
)
}

clippy2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// clippy2.rs
//
// Execute `rustlings hint clippy2` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn main() {
let mut res = 42;
let option = Some(12);
if let Some(x) = option {
res += x;
}
println!("{}", res);
}

clippy3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// clippy3.rs
//
// Here's a couple more easy Clippy fixes, so you can see its utility.
//
// Execute `rustlings hint clippy3` or use the `hint` watch subcommand for a hint.

// I AM DONE

#[allow(unused_variables, unused_assignments)]
fn main() {
let my_option: Option<()> = None;
if my_option.is_none() {
// let temp = my_option.unwrap();
}

let my_arr = &[
-1, -2, -3,
-4, -5, -6,
];
println!("My array! Here it is: {:?}", my_arr);

let mut my_empty_vec = vec![1, 2, 3, 4, 5];
my_empty_vec.clear();
println!("This Vec is empty, see? {:?}", my_empty_vec);

let mut value_a = 45;
let mut value_b = 66;
// Let's swap these two!
std::mem::swap(&mut value_a, &mut value_b);
println!("value a: {}; value b: {}", value_a, value_b);
}

conversions

using_as.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// using_as.rs
//
// Type casting in Rust is done via the usage of the `as` operator. Please note
// that the `as` operator is not only used when type casting. It also helps with
// renaming imports.
//
// The goal is to make sure that the division does not fail to compile and
// returns the proper type.
//
// Execute `rustlings hint using_as` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

fn average(values: &[f64]) -> f64 {
let total = values.iter().sum::<f64>();
total / values.len() as f64
}

fn main() {
let values = [3.5, 0.3, 13.0, 11.7];
println!("{}", average(&values));
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn returns_proper_type_and_value() {
assert_eq!(average(&[3.5, 0.3, 13.0, 11.7]), 7.125);
}
}

from_into.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// from_into.rs
//
// The From trait is used for value-to-value conversions. If From is implemented
// correctly for a type, the Into trait should work conversely. You can read
// more about it at https://doc.rust-lang.org/std/convert/trait.From.html
//
// Execute `rustlings hint from_into` or use the `hint` watch subcommand for a
// hint.

#[derive(Debug)]
struct Person {
name: String,
age: usize,
}

// We implement the Default trait to use it as a fallback
// when the provided string is not convertible into a Person object
impl Default for Person {
fn default() -> Person {
Person {
name: String::from("John"),
age: 30,
}
}
}

// Your task is to complete this implementation in order for the line `let p =
// Person::from("Mark,20")` to compile Please note that you'll need to parse the
// age component into a `usize` with something like `"4".parse::<usize>()`. The
// outcome of this needs to be handled appropriately.
//
// Steps:
// 1. If the length of the provided string is 0, then return the default of
// Person.
// 2. Split the given string on the commas present in it.
// 3. Extract the first element from the split operation and use it as the name.
// 4. If the name is empty, then return the default of Person.
// 5. Extract the other element from the split operation and parse it into a
// `usize` as the age.
// If while parsing the age, something goes wrong, then return the default of
// Person Otherwise, then return an instantiated Person object with the results

// I AM DONE

impl From<&str> for Person {
fn from(s: &str) -> Person {
let (name, age) = match s.split_once(',') {
Some((name, age)) => (name.trim(), age.trim()),
_ => return Person::default(),
};

if let Ok(age) = age.parse::<usize>() {
if name.len() > 0 {
return Person {
name: String::from(name),
age,
};
}
}

Person::default()
}
}

fn main() {
// Use the `from` function
let p1 = Person::from("Mark,20");
// Since From is implemented for Person, we should be able to use Into
let p2: Person = "Gerald,70".into();
println!("{:?}", p1);
println!("{:?}", p2);
}

#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_default() {
// Test that the default person is 30 year old John
let dp = Person::default();
assert_eq!(dp.name, "John");
assert_eq!(dp.age, 30);
}
#[test]
fn test_bad_convert() {
// Test that John is returned when bad string is provided
let p = Person::from("");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}
#[test]
fn test_good_convert() {
// Test that "Mark,20" works
let p = Person::from("Mark,20");
assert_eq!(p.name, "Mark");
assert_eq!(p.age, 20);
}
#[test]
fn test_bad_age() {
// Test that "Mark,twenty" will return the default person due to an
// error in parsing age
let p = Person::from("Mark,twenty");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_missing_comma_and_age() {
let p: Person = Person::from("Mark");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_missing_age() {
let p: Person = Person::from("Mark,");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_missing_name() {
let p: Person = Person::from(",1");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_missing_name_and_age() {
let p: Person = Person::from(",");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_missing_name_and_invalid_age() {
let p: Person = Person::from(",one");
assert_eq!(p.name, "John");
assert_eq!(p.age, 30);
}

#[test]
fn test_trailing_comma() {
let p: Person = Person::from("Mike,32");
assert_eq!(p.name, "Mike");
assert_eq!(p.age, 32);
}

#[test]
fn test_trailing_comma_and_some_string() {
let p: Person = Person::from("Mike,32");
assert_eq!(p.name, "Mike");
assert_eq!(p.age, 32);
}
}

from_str.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// from_str.rs
//
// This is similar to from_into.rs, but this time we'll implement `FromStr` and
// return errors instead of falling back to a default value. Additionally, upon
// implementing FromStr, you can use the `parse` method on strings to generate
// an object of the implementor type. You can read more about it at
// https://doc.rust-lang.org/std/str/trait.FromStr.html
//
// Execute `rustlings hint from_str` or use the `hint` watch subcommand for a
// hint.

use std::num::ParseIntError;
use std::str::FromStr;

#[derive(Debug, PartialEq)]
struct Person {
name: String,
age: usize,
}

// We will use this error type for the `FromStr` implementation.
#[derive(Debug, PartialEq)]
enum ParsePersonError {
// Empty input string
Empty,
// Incorrect number of fields
BadLen,
// Empty name field
NoName,
// Wrapped error from parse::<usize>()
ParseInt(ParseIntError),
}

// I AM DONE

// Steps:
// 1. If the length of the provided string is 0, an error should be returned
// 2. Split the given string on the commas present in it
// 3. Only 2 elements should be returned from the split, otherwise return an
// error
// 4. Extract the first element from the split operation and use it as the name
// 5. Extract the other element from the split operation and parse it into a
// `usize` as the age with something like `"4".parse::<usize>()`
// 6. If while extracting the name and the age something goes wrong, an error
// should be returned
// If everything goes well, then return a Result of a Person object
//
// As an aside: `Box<dyn Error>` implements `From<&'_ str>`. This means that if
// you want to return a string error message, you can do so via just using
// return `Err("my error message".into())`.

impl FromStr for Person {
type Err = ParsePersonError;
fn from_str(s: &str) -> Result<Person, Self::Err> {
if s.is_empty() {
return Err(ParsePersonError::Empty);
}

let splitted_item = s.split(',').collect::<Vec<&str>>();
let (name, age) = match &splitted_item[..] {
[name, age] => (
name.to_string(),
age.parse().map_err(ParsePersonError::ParseInt)?,
),
_ => return Err(ParsePersonError::BadLen),
};

if name.is_empty() {
return Err(ParsePersonError::NoName);
}

Ok(Person {
name: name.into(),
age,
})
}
}

fn main() {
let p = "Mark,20".parse::<Person>().unwrap();
println!("{:?}", p);
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn empty_input() {
assert_eq!("".parse::<Person>(), Err(ParsePersonError::Empty));
}
#[test]
fn good_input() {
let p = "John,32".parse::<Person>();
assert!(p.is_ok());
let p = p.unwrap();
assert_eq!(p.name, "John");
assert_eq!(p.age, 32);
}
#[test]
fn missing_age() {
assert!(matches!(
"John,".parse::<Person>(),
Err(ParsePersonError::ParseInt(_))
));
}

#[test]
fn invalid_age() {
assert!(matches!(
"John,twenty".parse::<Person>(),
Err(ParsePersonError::ParseInt(_))
));
}

#[test]
fn missing_comma_and_age() {
assert_eq!("John".parse::<Person>(), Err(ParsePersonError::BadLen));
}

#[test]
fn missing_name() {
assert_eq!(",1".parse::<Person>(), Err(ParsePersonError::NoName));
}

#[test]
fn missing_name_and_age() {
assert!(matches!(
",".parse::<Person>(),
Err(ParsePersonError::NoName | ParsePersonError::ParseInt(_))
));
}

#[test]
fn missing_name_and_invalid_age() {
assert!(matches!(
",one".parse::<Person>(),
Err(ParsePersonError::NoName | ParsePersonError::ParseInt(_))
));
}

#[test]
fn trailing_comma() {
assert_eq!("John,32,".parse::<Person>(), Err(ParsePersonError::BadLen));
}

#[test]
fn trailing_comma_and_some_string() {
assert_eq!(
"John,32,man".parse::<Person>(),
Err(ParsePersonError::BadLen)
);
}
}

try_from_into.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// try_from_into.rs
//
// TryFrom is a simple and safe type conversion that may fail in a controlled
// way under some circumstances. Basically, this is the same as From. The main
// difference is that this should return a Result type instead of the target
// type itself. You can read more about it at
// https://doc.rust-lang.org/std/convert/trait.TryFrom.html
//
// Execute `rustlings hint try_from_into` or use the `hint` watch subcommand for
// a hint.

use std::convert::{TryFrom, TryInto};

#[derive(Debug, PartialEq)]
struct Color {
red: u8,
green: u8,
blue: u8,
}

// We will use this error type for these `TryFrom` conversions.
#[derive(Debug, PartialEq)]
enum IntoColorError {
// Incorrect length of slice
BadLen,
// Integer conversion error
IntConversion,
}

// I AM DONE

// Your task is to complete this implementation and return an Ok result of inner
// type Color. You need to create an implementation for a tuple of three
// integers, an array of three integers, and a slice of integers.
//
// Note that the implementation for tuple and array will be checked at compile
// time, but the slice implementation needs to check the slice length! Also note
// that correct RGB color values must be integers in the 0..=255 range.

// Tuple implementation
impl TryFrom<(i16, i16, i16)> for Color {
type Error = IntoColorError;
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
let (red, green, blue) = tuple;

for color in [red, green, blue] {
if !(0..=255).contains(&color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: tuple.0 as u8,
green: tuple.1 as u8,
blue: tuple.2 as u8,
})
}
}

// Array implementation
impl TryFrom<[i16; 3]> for Color {
type Error = IntoColorError;
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
for color in arr {
if !(0..=255).contains(&color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: arr[0] as u8,
green: arr[1] as u8,
blue: arr[2] as u8,
})
}
}

// Slice implementation
impl TryFrom<&[i16]> for Color {
type Error = IntoColorError;
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
if slice.len() != 3 {
return Err(IntoColorError::BadLen);
}
for color in slice {
if !(0..=255).contains(color) {
return Err(IntoColorError::IntConversion);
}
}
Ok(Self {
red: slice[0] as u8,
green: slice[1] as u8,
blue: slice[2] as u8,
})
}
}

fn main() {
// Use the `try_from` function
let c1 = Color::try_from((183, 65, 14));
println!("{:?}", c1);

// Since TryFrom is implemented for Color, we should be able to use TryInto
let c2: Result<Color, _> = [183, 65, 14].try_into();
println!("{:?}", c2);

let v = vec![183, 65, 14];
// With slice we should use `try_from` function
let c3 = Color::try_from(&v[..]);
println!("{:?}", c3);
// or take slice within round brackets and use TryInto
let c4: Result<Color, _> = (&v[..]).try_into();
println!("{:?}", c4);
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_tuple_out_of_range_positive() {
assert_eq!(
Color::try_from((256, 1000, 10000)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_out_of_range_negative() {
assert_eq!(
Color::try_from((-1, -10, -256)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_sum() {
assert_eq!(
Color::try_from((-1, 255, 255)),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_tuple_correct() {
let c: Result<Color, _> = (183, 65, 14).try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_array_out_of_range_positive() {
let c: Result<Color, _> = [1000, 10000, 256].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_out_of_range_negative() {
let c: Result<Color, _> = [-10, -256, -1].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_sum() {
let c: Result<Color, _> = [-1, 255, 255].try_into();
assert_eq!(c, Err(IntoColorError::IntConversion));
}
#[test]
fn test_array_correct() {
let c: Result<Color, _> = [183, 65, 14].try_into();
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_slice_out_of_range_positive() {
let arr = [10000, 256, 1000];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_out_of_range_negative() {
let arr = [-256, -1, -10];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_sum() {
let arr = [-1, 255, 255];
assert_eq!(
Color::try_from(&arr[..]),
Err(IntoColorError::IntConversion)
);
}
#[test]
fn test_slice_correct() {
let v = vec![183, 65, 14];
let c: Result<Color, _> = Color::try_from(&v[..]);
assert!(c.is_ok());
assert_eq!(
c.unwrap(),
Color {
red: 183,
green: 65,
blue: 14
}
);
}
#[test]
fn test_slice_excess_length() {
let v = vec![0, 0, 0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen));
}
#[test]
fn test_slice_insufficient_length() {
let v = vec![0, 0];
assert_eq!(Color::try_from(&v[..]), Err(IntoColorError::BadLen));
}
}

as_ref.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// as_ref_mut.rs
//
// AsRef and AsMut allow for cheap reference-to-reference conversions. Read more
// about them at https://doc.rust-lang.org/std/convert/trait.AsRef.html and
// https://doc.rust-lang.org/std/convert/trait.AsMut.html, respectively.
//
// Execute `rustlings hint as_ref_mut` or use the `hint` watch subcommand for a
// hint.

// I AM DONE

// Obtain the number of bytes (not characters) in the given argument.
// TODO: Add the AsRef trait appropriately as a trait bound.
fn byte_counter<T : AsRef<str>>(arg: T) -> usize {
arg.as_ref().as_bytes().len()
}

// Obtain the number of characters (not bytes) in the given argument.
// TODO: Add the AsRef trait appropriately as a trait bound.
fn char_counter<T : AsRef<str>>(arg: T) -> usize {
arg.as_ref().chars().count()
}

// Squares a number using as_mut().
// TODO: Add the appropriate trait bound.
fn num_sq<T : AsMut<u32>>(arg: &mut T) {
// TODO: Implement the function body.
*arg.as_mut() *= *arg.as_mut()
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn different_counts() {
let s = "Café au lait";
assert_ne!(char_counter(s), byte_counter(s));
}

#[test]
fn same_counts() {
let s = "Cafe au lait";
assert_eq!(char_counter(s), byte_counter(s));
}

#[test]
fn different_counts_using_string() {
let s = String::from("Café au lait");
assert_ne!(char_counter(s.clone()), byte_counter(s));
}

#[test]
fn same_counts_using_string() {
let s = String::from("Cafe au lait");
assert_eq!(char_counter(s.clone()), byte_counter(s));
}

#[test]
fn mult_box() {
let mut num: Box<u32> = Box::new(3);
num_sq(&mut num);
assert_eq!(*num, 9);
}
}

quiz

quiz1.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// quiz1.rs
//
// This is a quiz for the following sections:
// - Variables
// - Functions
// - If
//
// Mary is buying apples. The price of an apple is calculated as follows:
// - An apple costs 2 rustbucks.
// - If Mary buys more than 40 apples, each apple only costs 1 rustbuck!
// Write a function that calculates the price of an order of apples given the
// quantity bought.
//
// No hints this time ;)

// I AM DONE

// Put your function here!
fn calculate_price_of_apples(num : i32) -> i32 {
if num > 40 {
num
} else {
num * 2
}
}

// Don't modify this function!
#[test]
fn verify_test() {
let price1 = calculate_price_of_apples(35);
let price2 = calculate_price_of_apples(40);
let price3 = calculate_price_of_apples(41);
let price4 = calculate_price_of_apples(65);

assert_eq!(70, price1);
assert_eq!(80, price2);
assert_eq!(41, price3);
assert_eq!(65, price4);
}

quiz2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// quiz2.rs
//
// This is a quiz for the following sections:
// - Strings
// - Vecs
// - Move semantics
// - Modules
// - Enums
//
// Let's build a little machine in the form of a function. As input, we're going
// to give a list of strings and commands. These commands determine what action
// is going to be applied to the string. It can either be:
// - Uppercase the string
// - Trim the string
// - Append "bar" to the string a specified amount of times
// The exact form of this will be:
// - The input is going to be a Vector of a 2-length tuple,
// the first element is the string, the second one is the command.
// - The output element is going to be a Vector of strings.
//
// No hints this time!

// I AM DONE

pub enum Command {
Uppercase,
Trim,
Append(usize),
}

mod my_module {
use super::Command;

// TODO: Complete the function signature!
pub fn transformer(input: Vec<(String, Command)>) -> Vec<String> {
// TODO: Complete the output declaration!
let mut output: Vec<String> = vec![];
for (string, command) in input.iter() {
// TODO: Complete the function body. You can do it!
match command {
Command::Uppercase => output.push(string.to_uppercase()),
Command::Trim => output.push(string.trim().to_string()),
Command::Append(usize) => {
let mut res = string.clone();
for _ in 0..*usize {
res += &String::from("bar");
}
output.push(res)
},
}
}
output
}
}

#[cfg(test)]
mod tests {
// TODO: What do we need to import to have `transformer` in scope?
use crate::my_module::transformer;
use super::Command;

#[test]
fn it_works() {
let output = transformer(vec![
("hello".into(), Command::Uppercase),
(" all roads lead to rome! ".into(), Command::Trim),
("foo".into(), Command::Append(1)),
("bar".into(), Command::Append(5)),
]);
assert_eq!(output[0], "HELLO");
assert_eq!(output[1], "all roads lead to rome!");
assert_eq!(output[2], "foobar");
assert_eq!(output[3], "barbarbarbarbarbar");
}
}

quiz3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// quiz3.rs
//
// This quiz tests:
// - Generics
// - Traits
//
// An imaginary magical school has a new report card generation system written
// in Rust! Currently the system only supports creating report cards where the
// student's grade is represented numerically (e.g. 1.0 -> 5.5). However, the
// school also issues alphabetical grades (A+ -> F-) and needs to be able to
// print both types of report card!
//
// Make the necessary code changes in the struct ReportCard and the impl block
// to support alphabetical report cards. Change the Grade in the second test to
// "A+" to show that your changes allow alphabetical grades.
//
// Execute `rustlings hint quiz3` or use the `hint` watch subcommand for a hint.

// I AM DONE

pub struct ReportCard<T> {
pub grade: T,
pub student_name: String,
pub student_age: u8,
}

impl<T: std::fmt::Display> ReportCard<T> {
pub fn print(&self) -> String {
format!("{} ({}) - achieved a grade of {}",
&self.student_name, &self.student_age, &self.grade)
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn generate_numeric_report_card() {
let report_card = ReportCard {
grade: 2.1,
student_name: "Tom Wriggle".to_string(),
student_age: 12,
};
assert_eq!(
report_card.print(),
"Tom Wriggle (12) - achieved a grade of 2.1"
);
}

#[test]
fn generate_alphabetic_report_card() {
// TODO: Make sure to change the grade here after you finish the exercise.
let report_card = ReportCard {
grade: "A+",
student_name: "Gary Plotter".to_string(),
student_age: 11,
};
assert_eq!(
report_card.print(),
"Gary Plotter (11) - achieved a grade of A+"
);
}
}

Rust